Evaluation of Google’s Voice Recognition and Sentence Classification for Health Care Applications
نویسندگان
چکیده
This study examined the use of voice recognition technology in perioperative services (Periop) to enable Periop staff to record workflow milestones using mobile technology. The use of mobile technology to improve patient flow and quality of care could be facilitated if such voice recognition technology could be made robust. The goal of this experiment was to allow the Periop staff to provide care without being interrupted with data entry and querying tasks. However, the results are generalizable to other situations where an engineering manager attempts to improve communication performance using mobile technology. This study enhanced Google’s voice recognition capability by using post-processing classifiers (i.e., bag-of-sentences, support vector machine, and maximum entropy). The experiments investigated three factors (original phrasing, reduced phrasing, and personalized phrasing) at three levels (zero training repetition, 5 training repetitions, and 10 training repetitions). Results indicated that personal phrasing yielded the highest correctness and that training the device to recognize an individual’s voice improved correctness as well. Although simplistic, the bag-of-sentences classifier significantly improved voice recognition correctness. The classification efficiency of the maximum entropy and support vector machine algorithms was found to be nearly identical. These results suggest that engineering managers could significantly enhance Google’s voice recognition technology by using post-processing techniques, which would facilitate its use in health care and other applications.
منابع مشابه
Voice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملWeb Speech API
This technical report describes the current state of the Web Speech API, which provides a JavaScript interface for speech analysis and speech synthesis to web applications. The focus lies on measuring the performance of Google’s speech recognition web service that is behind the experimental API implementation in the Chromium browser. To this end, sentence correctness and word accuracy is measur...
متن کاملImprovement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination
Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملMedical Informatics: Concepts and Applications
Medical Informatics is a developing body of knowledge concerned with the use of information and communication technology in support of medical research, education and also for promoting health care delivery. The field focuses on the biomedical information, patient data, and also acquisition, storage, retrieval and optimal use of information for problem solving and decision making. The goal of m...
متن کامل